

�

3

�

Chapter 1

Understanding Software

Engineering

In order to understand software engineering, we first need to look
at the projects that were reported in the early software engineering
literature. One feature is immediately striking—the absence of
reports on commercial applications. Most case studies are of either
large defense projects or small scientific projects. In either case, the
projects typically involved severe hardware and software challenges
that are not relevant to most modern projects.

A typical example is the SAFEGUARD Ballistic Missile Defense Sys-
tem, which was developed from 1969 through 1975.

3

 “The develop-
ment and deployment of the SAFEGUARD System entailed the
development of one of the largest, most complex software systems
ever undertaken.” The project took 5,407 staff-years, starting with
188 staff years in 1969 and peaking at 1,261 staff-years in 1972.
Overall productivity was 418 instructions per staff-year.

SAFEGUARD was a very large software engineering project that
challenged the state of the art at the time. Computer hardware was
specially developed for the project. Although the programming was
done in low-level languages, the Code and Unit Test activities

3. Stephenson, W. E., “An analysis of the resources used in the SAFEGUARD
system software development.” In Donald J. Reefer,

Tutorial: Software Manage-
ment,

 IEEE Computer Society, 1981.

McBreen.book Page 3 Wednesday, August 1, 2001 10:08 PM

4

�

C

HAPTER

 1 U

NDERSTANDING

 S

OFTWARE

 E

NGINEERING

required less than 20% of the overall effort. System Engineering
(requirements) and Design each consumed 20% of the effort, with the
remainder (more than 40%) being accounted for by Integration Testing.

The Paradox of Software Engineering

In trying to understand software engineering, we need to keep two
points in mind:

•Projects the size of SAFEGUARD are extremely rare.

•These very large projects (1,000-plus staff-years) helped to
define software engineering.

Similarly,

 The Mythical Man-Month

4

 by Fred Brooks was based on
IBM’s experiences when developing the OS/360 operating system.
Even though Brooks wrote about the fact that

large programming
projects suffer management problems that are different from the
problems encountered by small ones due to the division of labor

, his
book is nevertheless still used to support the ideas behind software
engineering.

These really large projects are really

systems engineering

 projects.
They are combined hardware and software projects in which the
hardware is being developed in conjunction with the software. A
defining characteristic of this type of project is that

initially the soft-
ware developers have to wait for the hardware, and then by the end
of the project the hardware people are waiting for the software.

 Soft-
ware engineering grew up out of this paradox.

What Did Developers Do While Waiting for the Hardware?

Early in the typical software engineering project, there was plenty of
time. The hardware was still being invented or designed, so the
software people had plenty of time to investigate the requirements
and produce detailed design specifications for the software. There

4. Brooks, Frederick P.,

The Mythical Man-Month,

 20th Anniversary Edition,
Addison-Wesley, 1995.

McBreen.book Page 4 Wednesday, August 1, 2001 10:08 PM

T

HE

 P

ARADOX

OF

 S

OFTWARE

 E

NGINEERING

�

5

was no point in starting to write the code early, because the pro-
grammers lacked hardware on which to run the code (and in many
early examples, the compilers and loaders for the code were not
ready either). In some cases, the programming language wasn’t
even chosen until late in the project. So, even if some design speci-
fications were complete, it was pointless to start coding early.

In that context, it made sense to define a rigorous requirements
process with the goal of producing a detailed requirements specifi-
cation that could be reviewed and signed off. Once the require-
ments were complete, this documentation could be handed off to a
design team, which could then produce an exquisitely detailed
design specification. Detailed design reviews were a natural part of
this process, as there was plenty of time to get the design right
while waiting for the development of the hardware to advance to the
point where an engineering prototype could be made available to
the software team.

How Did Developers Speed Up Software Delivery Once the Hardware
Became Available?

The short answer is, “Throw lots of bodies at the problem.” This was
the “human wave” approach that Steven Levy described and that can
be seen in the manpower figures reported from the SAFEGUARD
project. As soon as the hardware became available, it made sense
to start converting the detailed design specifications into code. For
optimum efficiency, the code was reviewed to ensure that it con-
formed to the detailed design specification, because any deviation
could lead to integration problems downstream.

Lots of people were needed at this stage because the project was wait-
ing for the software to be written and tested. So, the faster the designs
could be converted into tested code, the better. Early software engi-
neering projects tended to use lots of programmers, but later on
the emphasis shifted toward the automatic generation of code from
the designs through the use of CASE tools. This shift occurred
because project teams faced many problems in making the overall
system work after it had been coded. If the code could be generated
from the design specifications, then projects would be completed
faster, and there would be fewer problems during integration.

McBreen.book Page 5 Wednesday, August 1, 2001 10:08 PM

6

�

C

HAPTER

 1 U

NDERSTANDING

 S

OFTWARE

 E

NGINEERING

Implications for the Development Process

Software engineering projects require lots of documentation. Dur-
ing the course of a project, three different skill sets are needed:

•Analysts to document the requirements

•Designers to create the design specifications

•Programmers to write the code

At every stage, the authors of each document must add extra detail
because they do not know who will subsequently be reading the
document. Without being able to assume a certain, common back-
ground knowledge, the only safe course is to add every bit of detail
and cross-referencing that the author knows. The reviewers must
then go through the document to confirm that it is complete and
unambiguous.

Complete documentation brings with it another challenge: Namely,
team members must ensure that the documents remain consistent
in the face of changes in requirements and design changes made
during implementation. Software engineering projects tackle this
challenge by making sure that there is complete traceability from
requirements through to implemented code. This ensures that
whenever a change must be made, all of the affected documents
and components can be identified and updated.

This document-driven approach affects the way that the people on
the project work together. Designers are reluctant to question the
analysts, and the programmers may be encouraged not to question
the design nor to suggest “improvements” to the design. Changes are
very expensive with all of the documents, so they must be controlled.

A great way to control changes from the bottom is to define a
project hierarchy that puts the analysts at the top, with the design-
ers below them, and the programmers at the bottom of the heap.
This structure is maintained by promoting good programmers to
become designers and allowing good designers to undertake the
analysts’ role.

McBreen.book Page 6 Wednesday, August 1, 2001 10:08 PM

T

HE

 M

ODERN

 D

EFINITION

OF

 S

OFTWARE

 E

NGINEERING

�

7

The Modern Definition

of Software Engineering

Over the last 30 years, the software engineering community has
followed the path of applying mechanical metaphors to the software
development process. Software engineering is now an accepted aca-
demic subject and an active research field for universities. The
focus for software engineering projects is on a defined, repeatable
approach as exemplified by the IEEE definition:

Software engineering is the application of a systematic, disciplined,
quantifiable approach to development, operation, and maintenance
of software; that is, the application of engineering to software.

5

This systematic, disciplined, and quantifiable approach to software
development has proved to be very effective at developing safety
critical systems. The team that writes the software for the space
shuttle, for example, used this approach and has managed to
achieve an admirable defect rate.

The last three versions of the program—each 420,000 lines long—
had just one error each. The last 11 versions of this software had a
total of 17 errors. Commercial programs of equivalent complexity
would have 5,000 errors.

6

In the process, however, other process constraints had to be relaxed.

Money is not the critical constraint: The group’s $35 million per
year budget is a trivial slice of the NASA pie, but on a dollars-per-
line basis, it makes the group among the nation’s most expensive
software organizations.

7

This is an appropriate engineering trade-off. When lives are at
stake, it makes sense to use whatever resources are needed to
ensure that nothing goes wrong. But what about software develop-
ment when the consequence of error is lower?

5.

IEEE Standard Computer Dictionary,

 ISBN 1-55937-079-3, IEEE, 1990.

6. “They Write the Right Stuff,”

Fast Company,

http://www.fastcompany.com/
online/06/writestuff.html.

7. “They Write the Right Stuff.”

McBreen.book Page 7 Wednesday, August 1, 2001 10:08 PM

8

�

C

HAPTER

 1 U

NDERSTANDING

 S

OFTWARE

 E

NGINEERING

Good Enough Software—Software Engineering for the Masses

For some software, rapid development of feature-rich applications
is what matters. The idea is that users will put up with errors in
programs because they have so many useful features that are
unobtainable elsewhere. As Edward Yourdon

8

 put it, “I’m going to
deliver a system to you in six months that will have 5,000 bugs in
it—and you’re going to be

very

 happy!”

Good enough software

 is a logical extension of the ideas of software
engineering. It represents the engineering trade-off between
resources, schedule, features, and defects. The space shuttle soft-
ware is safety-critical, so it has to minimize defects, accepting the
resulting schedule and resource demands. Commercial shrink-
wrapped applications like word processors and Web browsers need
lots of features that must be developed quickly. Resources are con-
strained by the need to make a profit, so the engineering trade-off
is made to shrink the schedule by spending less time removing
known defects. The idea is that for some kinds of known defects, it
is not economic to take the time to remove them.

Is Software Engineering a Good Choice

for Your Project?

Systems engineering projects that involve the development of new
hardware and software are a natural fit for software engineering.
Many defense and aerospace projects fit within this category. When
I’m a passenger in a “fly by wire” aircraft, I want to know that a

sys-
tematic, disciplined, and quantifiable approach

 was taken to the
development and verification of the flight control software. After all,
it would not be very comforting to know that the software “was
developed by the lowest bidder.”

If your organization develops large, shrink-wrapped consumer soft-
ware applications and is good at making appropriate engineering
trade-offs, you might be able to use the

good enough software

8. Yourdon, Edward,

Rise and Resurrection of the American Programmer

, Prentice-
Hall, 1996.

McBreen.book Page 8 Wednesday, August 1, 2001 10:08 PM

I

S

 S

OFTWARE

 E

NGINEERING

A

 G

OOD

 C

HOICE

FOR

 Y

OUR

 P

ROJECT

?

�

9

approach. The key to success with this type of software engineering
is volume. You need to be selling millions of units in a competitive
market where customers buy on the basis of reviews and market-
ing rather than on detailed, side-by-side comparisons of products.

In all other cases, you should be looking for alternatives to software
engineering.

McBreen.book Page 9 Wednesday, August 1, 2001 10:08 PM

McBreen.book Page 10 Wednesday, August 1, 2001 10:08 PM

